Online chromatic and scale-space microvessel-tracing analysis for transmitted light optical images

Constantino Carlos Reyes-Aldasoro, Meit A. Björndahl, Simon Akerman, Jamila Ibrahim, Michael K. Griffiths, Gillian M. Tozer

Abstract


Limited contrast in transmitted light optical images from intravital microscopy is problematic for analysing tumour vascular morphology. Moreover, in some cases, changes in vasculature are visible to a human observer but are not easy to quantify. In this paper two online algorithms are presented: scale-space vessel tracing and chromatic decomposition for analysis of the vasculature of SW1222 human colorectal carcinoma xenografts growing in dorsal skin-fold ““window”” chambers in mice. Transmitted light optical images of tumours were obtained from mice treated with the tumour vascular disrupting agent, combretastatin-A-4-phosphate (CA4P), or saline. The tracing algorithm was validated against hand-traced vessels with accurate results. The measurements extracted with the algorithms confirmed the known effects of CA4P on tumour vascular topology. Furthermore, changes in the chromaticity suggest a deoxygenation of the blood with a recovery to initial levels in CA4P-treated tumours relative to the controls. The algorithms can be freely applied to other studies through the CAIMAN website (CAncer IMage ANalysis: http://www.caiman.org.uk).”